Finite Group Actions on Siegel Modular Spaces
نویسندگان
چکیده
منابع مشابه
Finite Group Actions on Siegel Modular Spaces
The theory of nonabelian cohomology is used to show that the set of fixed points of a finite group acting on a Siegel modular space is a union of Shimura varieties
متن کاملSiegel Modular Forms and Finite Symplectic Groups
The finite symplectic group Sp(2g) over the field of two elements has a natural representation on the vector space of Siegel modular forms of given weight for the principal congruence subgroup of level two. In this paper we decompose this representation, for various (small) values of the genus and the level, into irreducible representations. As a consequence we obtain uniqueness results for cer...
متن کاملGroup Actions on Median Spaces
We investigate the geometry of median metric spaces. The group-theoretic applications are towards Kazhdan’s property (T) and Haagerup’s property.
متن کاملGroup Actions on Banach Spaces
We survey the recent developments concerning fixed point properties for group actions on Banach spaces. In the setting of Hilbert spaces such fixed point properties correspond to Kazhdan’s property (T). Here we focus on the general, non-Hilbert case, we discuss the methods, examples and several applications. 2010 Mathematics Subject Classification: 20J06, 18H10, 46B99
متن کاملOn Atkin-Lehner correspondences on Siegel spaces
We introduce a higher dimensional Atkin-Lehner theory for Siegel-Parahoric congruence subgroups of $GSp(2g)$. Old Siegel forms are induced by geometric correspondences on Siegel moduli spaces which commute with almost all local Hecke algebras. We also introduce an algorithm to get equations for moduli spaces of Siegel-Parahoric level structures, once we have equations for prime l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1994
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-94-99998-4